Anomalies observed in nuclear transitions indicate the existence of a new particle with mass of 17 MeV/c²

Attila J. Krasznahorkay

Inst. of Nucl. Res. (Atomki)

3 main divisions:

- Nuclear Physics Division
- Atomic Physics Division
- Applied Physics Division
 Size: 100 scientists, 100 other
 staff

In the downtown of Debrecen, www.atomki.mta.hu

Leitmotif of my present talk:

In an age of giant accelerators, of complex experiments and of mystifying theories it is a pleasure to report on some simple experiments, made with simple equipment and having a simple interpretation

Robert Hofstadter (Nobel, 1961)

Dark Forces at Accelerators Workshop

INFN – Laboratori Nazionali di Frascati 16th -19th October, 2012

Search for a light neutral boson in nuclear transitions Attila Krasznahorkay, F.W.N. de Boer, M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, T.J. Ketel, A. Krasznahorkay Jr., R.G. Lovas, B.M. Nyakó, L. Stuhl, T. Tornyi, J. Van Klinken

The boson showed up with $\approx 3\sigma$ confidence \rightarrow inspiration for further more precise experiments !!!

Observation of Anomalous Internal Pair Creation in ⁸Be: A Possible Indication of a Light, Neutral Boson

A. J. Krasznahorkay,^{*} M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, M. Hunyadi, I. Kuti, B. M. Nyakó, L. Stuhl, J. Timár, T. G. Tornyi, and Zs. Vajta

Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary

T. J. Ketel

Nikhef National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, Netherlands

A. Krasznahorkay

CERN, CH-1211 Geneva 23, Switzerland and Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), P.O. Box 51, H-4001 Debrecen, Hungary (Received 7 April 2015; published 26 January 2016)

Electron-positron angular correlations were measured for the isovector magnetic dipole 17.6 MeV

~200 citations, ⁸Be anomaly, X17 boson

Study the ⁸Be M1 transitions

Excitation with the ⁷Li(p,γ)⁸Be reaction

Internal pair creation and particle decay

Signature

Experiments with a new e⁺e⁻ spectrometer (NIM, A808 (2016) 21)

X17 boson Krasznahorkav

Proton decay: $B(p + {^7Li}) \approx 100\%$ γ -decay: $B({^8Be} + g) \approx 1.5 \times 10^{-5}$ Internal pair creation: $B({^8Be} + e^+ e^-) \approx 5.5 \times 10^{-8}$ Ejection of a new particle: $B({^8Be} + X) \approx 5.5 \times 10^{-10}$

Results e⁺ - e⁻ sum energy spectra and angular correlations

Θ (deg.)

How can we understand the peak like deviation? Fitting the angular correlations

Experimental angular e^+e^- pair correlations measured in the ⁷Li(p,e⁺e⁻) reaction at Ep=1.10 MeV with -0.5< y <0.5 (closed circles) and |y|>0.5 (open circles), where y=(E1-E2)/(E1+E2). Determination of the mass of the new particle by the X²/f method

$$m^2 \approx (1-y^2) E^2 \sin(\Theta/2)$$

$$Y = \frac{E_+ - E_-}{E_+ + E_-}$$

Repeating the experiments at a new Medium-Current Tandetron Accelerator in Atomki

Main specifications:

- TV ripple: 25 V_{RMS}, TV stability: 200 V (GVM), 30 V (SLITS)
- Beam current capability at 2 MV: 200 μA proton, 40 μA He

The new e⁺e⁻ pair spectrometer with six telescopes equipped with Si DSSD's

Background from cosmic rays in the setups with 5 and 6 telescopes

Efficiency curves for the setups with 5 and 6 telescopes

Relative numbers! The absolute efficiency for 6 detectors is certainly larger!

The results of the present experiment can be considered independent from the one we published in PRL in 2016. X17 boson Krasznahorkay 13

Recent results for the 18.15 MeV transition

Study of the 21 MeV M0 transition in ⁴He excited by ³H+p, and ³He+n reactions

γ-ray production with direct proton capture. The main source of background produced by external pair creation on the backing of the target and on the other surrounding materials. **GEANT simulations.**

Results for the e⁺e⁻ decay measured in Debrecen

On the partial width (Γ_X) of the X17 particle

$$\Gamma_X / \Gamma_{E0} = \left(\frac{\sigma(x17)}{\sigma(E0)}\right)_{exp.} \left(\frac{\sigma(0^+)}{\sigma(0^-)}\right)_{th.}$$
$$\left(\frac{\sigma(x17)}{\sigma(E0)}\right)_{exp.} = 0.20$$
$$\left(\frac{\sigma(0^+)}{\sigma(0^-)}\right)_{th.} = \frac{\Gamma_{tot}(0^+)}{\Gamma_{tot}(0^-)} = 0.59$$
Since: $\Gamma_{E0} = 3.3 \times 10^{-4} \quad \Rightarrow \Gamma_X = 3.9 \times 10^{-5} \text{ eV}$

In ⁸Be it was: $\Gamma_X = \Gamma_\gamma x B_x = 1.9x6x10^{-6} \text{ eV} = 1.2x10^{-5} \text{ eV}$ (role of the phase space correction factor)⁷

Details of the fit performed by RooFit

Invariant mass distribution

Conclusion

- The ⁸Be anomaly has been reproduced with an upgraded spectrometer.
- The effect can not be explained within nuclear physics.
- The anomaly can be successfully described by a new particle called X17.
- The effect of X17 was observed also in ⁴He in a 21.01 MeV $0^- \rightarrow 0^+$ transition at a correspondingly smaller angle. The significance of the peak is 7.2 σ .
- We are planning to study the γγ-decay of X17 to determine their spin.
- Promising outlook.

Acknowledgement

M. Csatlós, L. Csige, Z. Gácsi, J. Gulyás, D. Firak,M. Hunyadi, M. Koszta, Á. Nagy, N. Sas, B. Szihalmi,J. Timár, T. Tornyi

To ⁸Be continued...

Thank you very much for your attention